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Abstract. Aqueous suspensions of V2O5 ribbons are one of the very few examples of mineral liquid crystals.
In the concentrated regime, we show that these ribbons organize in a biaxial nematic gel phase. A Couette
shear cell was used to produce a well oriented sample for in situ synchrotron X-ray scattering studies. We
observed two perpendicular anisotropic sections of reciprocal space, which proves the biaxial symmetry of
the nematic order. The thermodynamic and flow properties of the biaxial nematic are well described by
hard-core theories. We suggest the use of a shear geometry to produce and investigate single domains of
other biaxial nematics, reported but still questioned in the literature.

PACS. 61.10.Eq X-ray scattering (including small-angle scattering) – 61.30.-v Liquid crystals – 64.70.Md
Transitions in liquid crystals

1 Introduction

Nematic liquid crystals are fluids made of anisotropic
molecules oriented on average along a preferred direc-
tion which is an axis of symmetry for the system. This
axis can be of infinite order, in which case the phase
is an uniaxial nematic (Nu), or of finite order, in which
case the phase is a biaxial nematic (Nb). The overwhelm-
ing majority of experimental systems belong to the first
category: in fact, extremely few biaxial nematics have
been reported in the literature [1–9] and some of the
reports dealing with thermotropic liquid crystals have
since been questioned [10]. The rare unambiguous ex-
amples of biaxial nematics belong either to the class of
lyotropic liquid crystals made of biaxial micelles of sur-
factants or to that of thermotropic liquid crystalline poly-
mers. On the theoretical side, the existence of Nb phases
has been predicted by Freiser in 1970 [11]. More recent
theoretical approaches [12] use “hard core” models where
ordering stems from excluded volume interactions to com-
pute “ab initio” phase diagrams and transport coeffi-
cients. However, the few biaxial nematics reported so far
can hardly be regarded as hard core fluids. They are
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dense phases in which the moieties (micelles or poly-
mers) are close packed so that many interactions are in-
volved, some of them being attractive. In this work, we
consider a new colloidal system of ribbon-like mineral
particles. This system is made of anisotropic and fairly
rigid vanadium pentoxide (V2O5) ribbons dispersed in
water [13]. Recent USAXS experiments have shown that
these ribbons are 1 nm thick, 25 nm wide and 250 nm
long [14]. The suspensions exhibit an isotropic (I)/Nu

phase transition at low volume fractions (φ ' 0.5%) well
described by the Onsager theory of nematic ordering. This
suggests that excluded volume is the dominant interac-
tion. At larger volume fractions (φ ' 1.5%), they un-
dergo a transition from a sol to a physical gel which is
still nematic. The striking biaxiality of these mineral rib-
bons prompted us to investigate the concentrated part
of their phase diagram, where a Nb phase may be ex-
pected. Indeed, the swelling behaviour (average distance
d between particles versus φ) of these suspensions (Fig. 1),
determined by small angle X-ray scattering (SAXS) exper-
iments performed on “powder” (i.e. unaligned) samples,
strongly suggested its existence [13]. At volume fractions
larger than 4%, a peculiar 1-dimensional (1D) swelling
law had been observed whereas the swelling law was 2-
dimensional (2D) at lower volume fractions as expected
for a common Nu phase. This crossover occurs when the
average distance between ribbons becomes comparable to
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Fig. 1. Swelling behaviour of the V2O5 suspensions.

their width which indicates a rotational hindrance in the
concentrated regime.

However, investigating the biaxiality of a nematic sam-
ple requires either the structural study of a single domain
(or at least of a well oriented sample), or the presence
of suitable nuclei to perform NMR experiments [9,10] (in
which case one needs a sample randomly aligned at least in
two dimensions) or the detailed study of optical textures
in polarized light microscopy [8]. This latter technique
could not be used with V2O5 suspensions because they
are much too absorbent and because the defect density
is too large. Vanadium NMR is dominated by the pres-
ence of paramagnetic VIV species and is therefore of no
help. Producing an aligned sample is not straightforward
either. A solution sometimes consists in the simultane-
ous application of magnetic and electric fields but V2O5

suspensions at these concentrations do not align in fields
due to their viscoelastic properties. We thus had to de-
vise a new way to achieve biaxial orientation. Shearing
was previously shown to orient these suspensions with the
long axes of the ribbons aligned along the direction of
shear [13]. A shear geometry, being biaxial, can reveal the
intrinsic biaxial symmetry of the concentrated samples.
We have therefore performed SAXS experiments under
shear on two nematic gel samples of volume fractions 5%
and 2% belonging respectively to the 1D and 2D swelling
regimes. We will show that shearing is indeed an effective
way of achieving biaxial alignment of the ribbons and that
concentrated V2O5 suspensions form a biaxial nematic gel
phase. Moreover, this new Nb phase has thermodynamic
and flow properties that agree with hard core theories of
Nb phases.

2 Experimental

V2O5 suspensions were synthesized by a sol-gel process de-
scribed in detail elsewhere [13]. Their concentration was
determined by the weight loss upon calcination with an
accuracy better than 0.2%. Samples were then prepared
to the desired concentration by slowly drying the original
dispersions. Concentrated samples were stirred to ensure
homogeneity. We have used a Couette shear cell (Fig. 2a)

Fig. 2. a) 3D view of the Couette cell with a schematic draw-
ing of the organization of the biaxial nematic phase of V2O5

ribbons. b) top view of the Couette cell in the radial configu-
ration (RC). c) top view of the Couette cell in the tangential
configuration (TC).

especially designed for in situ SAXS experiments, consist-
ing in two coaxial polycarbonate cylinders. The sample is
inserted into the gap between the cylinders; the outer one
is the rotor and the inner one is the stator.

Two scattering experiments with a different symme-
try axis aligned along the X-ray beam are necessary to
demonstrate the biaxial symmetry of a nematic sample.
Since we cannot rotate the Couette cell with respect to the
beam, we worked in two distinct configurations (Figs. 2b
and 2c). For clarity, the ribbons are depicted with their
long axes oriented on average along the flow as it was de-
duced from the experimental results described below. The
X-ray beam is perpendicular to the flow lines in the radial
configuration (RC) and is parallel to them in the tangen-
tial configuration (TC). The combination of two RC and
TC experiments is thus well suited to investigate the exis-
tence of a Nb phase. In order to obtain clear scattering pat-
terns in the TC, an X-ray beam of diameter smaller than
the gap is required. Moreover, to overcome the stronger
absorption in this configuration, we used a high energy
(12.4 keV) and high flux monochromatic beam (1012 ph/s
in 200× 200 µm2) on the “high brilliance” ID2 beamline
at the ESRF (European Synchrotron Radiation Facility,
Grenoble France) [15]. The implementation of this Cou-
ette shear cell on a high brilliance synchrotron X-ray line
has already proved a very powerful technique to study
shear flow of complex fluids [16,17].

3 Results

Figure 3 shows the results obtained with the 5% and
2% samples. Scattering patterns recorded in the RC both
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Fig. 3. 2-D scattering patterns obtained - with the 2% sample:
(a) in the RC, (b) in the TC - with the 5% sample: (c) in the
RC, (d) in the TC.

show a clear anisotropy (Figs. 3a and 3c), with the in-
tensity localized along the Oz direction. This shows that,
as expected, the ribbons are aligned with their long axes
parallel to the flow in both samples. Now, scattering pat-
terns taken in the TC directly assess the uniaxial or biaxial
character of the nematic order. The 2% sample shows com-
plete revolution symmetry around its director (Fig. 3b):
it is uniaxial. It should be noted here that this sample
remained uniaxial even under the largest shear rate avail-
able, i.e. 8000 s−1. In contrast, the 5% sample does not
show this rotational symmetry (Fig. 3d): it is biaxial. This
orientation can be produced by applying a shear rate as
low as 100 s−1 during 5 minutes. The orientation does not
relax and the order parameter V remains constant upon
cessation of shear on the time scale of a SAXS experiment,
i.e. hours. The reproducibility of all the experiments de-
scribed here was systematically checked.

More quantitative insight into the organization of the
ribbons can be drawn from azimuthal and radial cuts of
the scattered intensity along different paths (L1−3, C1−4,
Fig. 3). Let us first describe the orientational order more
quantitatively. Two directors are classically used to de-
fine the orientation of a Nb phase. The “main” director,
called n, gives the direction of the long axes of the par-
ticles whereas the “biaxial” director, called m, gives the
direction of the transverse axes of the particles, along their
breadth. A set of 4 scalar order parameters is also intro-
duced [18] as the averages of different functions of the
Euler angles (α, β, γ) that a ribbon shaped particle makes
with a reference frame, weighted by the orientational dis-
tribution function f(α, β, γ). Only two of these parame-
ters are relevant in our case. One is the well known order
parameter S = 〈3 cos2 α−1

2 〉 which describes the orienta-

Fig. 4. X-ray intensity (in arbitrary units) – versus scattering
vector s (s = 2

λ sin θ
2 with λ the wavelength and θ the scatter-

ing angle) in nm−1 (a) along L1 (open circles) and L2 (open
squares), (b) along L2 (open squares) and L3 (filled squares) –
versus azimuthal angle (c) along C1 (open circles) and C2 (open
squares), (d) along C3 (open circles) and C4 (open squares).
Solid lines are fits (see text).

tional order of the long axes of the ribbons. It is the only
non-zero order parameter in the Nu phase. The other one
is V = 1

2 〈(1 + cos2 α) cos 2β cos 2γ − cosα sin 2β sin 2γ〉
which describes the biaxial order. The measurement of S
in the Nu phase is straightforward. The intensity scat-
tered on circle C1 is classically modelled [19] by the

formula: I(θ) = k em cos2 θ
√
m cos θ

erf(
√
m cos θ), where k is a

normalization factor, erf is the error function, θ is the
azimuthal angle and m is a fit parameter directly related
to S. Fitting the scattered intensity with this formula
yields S ' 0.75, in good agreement with previous ex-
periments on magnetically aligned samples [20]. Unfortu-
nately, several assumptions involved in this procedure are
not met by the Nb phase. Nevertheless, we have fitted the
azimuthal cut C2 using the same formula (Fig. 4c). The fit
is still accurate and yields S ' 0.5 in the Nb phase. Addi-
tional experiments are needed to confirm this decrease of
S at the Nu/Nb transition, which seems rather surprising
when compared to computer simulations [21]. This effect
could simply be due to a remaining mosaic spread of the
sample but the onset of biaxial ordering might also de-
crease the value of S [22].

To our knowledge, there is no analytical expression for
the intensity scattered by a biaxial nematic allowing the
determination of V so that we had to resort to a very
pragmatic approach. We have assumed that the long axes
of the ribbons were perfectly oriented. Then, the inten-
sity scattered along C4 is proportional to the convolution
product of the orientational distribution function of m
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Fig. 5. X-ray intensity along Oz versus scattering vector s in
nm−1 for the 5% sample in RC and TC. The intensities are
given in number of counts divided by the absorption coeffi-
cient of the sample measured in each configuration and by the
exposure time.

(supposed to be confined in a plane perpendicular to n)
by a Gaussian intensity distribution accounting for the fi-
nite width of the ribbons. Assuming a Maier-Saupe form
(emcos2 φ) [23] for the orientational distribution function of
m, we have performed a fit which leads to V ' 0.35±0.05
for the 5% sample (Fig. 4d). It is clear that V is lower than
S in the Nb phase. To check the validity of this treatment,
we have applied it to the 2% sample (along C3) and ob-
tained V ' 0±0.05, in agreement with its uniaxial nature.

Let us now consider the local positional order as in-
ferred from radial cuts of the scattering patterns. The two
samples are obviously different in this respect. In the RC,
cuts along Oz (lines L1 and L2) show a clear correlation
peak for the 2% sample at s ' 0.033 nm−1 (where s is the
scattering vector modulus) but only a very weak shoul-
der for the 5% sample (Fig. 4a). Once corrected for the
different absorption coefficients, cuts along Oz in the TC
perfectly match those in the RC, as illustrated in Figure 5.
This proves that the two different sample volumes probed
in each configuration actually have the same structure.
In other words, the samples are homogeneous through-
out the shear cell. For the 5% sample, a cut along Oy, in
the TC (line L3), shows a well defined correlation peak at
s ' 0.075 nm−1 (Fig. 4b). Due to the rather low value
of V , the tail of this peak gives rise to the above men-
tioned weak shoulder along L2 which is located at the
same value of s. These two peaks correspond to distances
in real space of 30 nm and 13.5 nm for the 2% and 5%
samples respectively. In the Nu phase, this distance can
be understood as the average separation between the long
axes of the ribbons [13]. In the Nb phase, it corresponds
to the average distance between their flat faces. The nor-
mal to these faces is oriented along the velocity gradient
as shown schematically in Figure 2. There does not seem
to be any lateral ordering of the ribbons (along Oz) in the
biaxial phase because we do not observe any additional
peak in this direction and because the scattering is well
described by the form factor of the ribbons instead.

4 Discussion

Our experimental results can be interpreted by assuming
that V2O5 ribbons are plain parallelepipeds interacting es-
sentially through hard core repulsion. Their surface charge
is highly screened because the Debye length is around
3 nm at the ionic strength I = 10−2 of the suspensions.
The experimental phase sequence: I/Nu/Nb as concentra-
tion increases is that predicted by hard core theories and
numerical simulations [12]. Moreover, the I/Nu transition
is found strongly first order whereas the Nu/Nb transition
is at most weakly first order, a fact also theoretically ex-
pected. More precisely, recent models [12] do indeed pre-
dict a Nu/Nb phase transition for such systems at high
enough concentrations under the following conditions: the
dimensions (a, b and c) of the parallelepiped must corre-
spond to the so-called self-conjugate point where b =

√
ac

(where a Landau bicritical point is expected), and a smec-
tic phase must not be more stable than the Nb phase.
The last condition is easily met by our system because
of the intrinsic polydispersity of the ribbons (the slight-
est degree of polydispersity is known to prevent smectic
ordering). Moreover, the width of the ribbons (25 nm) is
somewhat larger than the one that would correspond to
the self-conjugate shape (17 nm). This is still close enough
for a Nb phase to be stable, but then the I/Nu and Nu/Nb

transitions are predicted to occur at very different concen-
trations, so that the uniaxial phase at the Nu/Nb transi-
tion should be well ordered. The biaxial directorm is thus
nearly confined in a plane, and the uniaxial/biaxial tran-
sition can be seen as an isotropic/nematic transition in
2 dimensions for the director m. Very simple arguments
(similar to those giving the scaling of the volume fraction
at the transition for the Onsager theory of uniaxial ne-
matic ordering) can now be used to estimate the volume
fraction φb at this transition. The order of magnitude of φb

is obtained from the condition of overlap of the excluded
areas of the cross sections of the ribbons. This leads to
φb ∝ thickness

width ' 4% (within a multiplicative factor of or-
der unity), again in good agreement with our experimental
data. Let us note that even though the Onsager theory is
strongly first order in 3 dimensions, its extensions to 2
dimensions give a second order phase transition [24–26].
Therefore the idea of a second “Onsager like” phase tran-
sition for the director m seems to give a qualitative picture
of the situation both in terms of volume fraction and order
parameter at the transition.

We now discuss the positional short-range order of the
ribbons. First, let us recall however that the nature of
the biaxial nematic phase is only defined by the symme-
tries of the long range orientational order [27,28]. This
means that the properties of the short range positional
order are actually irrevelant in this respect. Neverthe-
less, the close examination of the positional correlations
in this biaxial nematic gel phase is instructive. A com-
mon idea of a biaxial nematic phase is that it should dis-
play three different scattering peaks along its three main
axes (let us note by the way that the observation of three
peaks at different s values in the scattering of unoriented
samples does not prove in any way the biaxial nature
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Fig. 6. Schematic representation of the organization of the
ribbons in a plane perpendicular to the first director n. The
straight segments represent the cross-sections of the ribbons.
m is oriented along a diagonal of the figure.

of the phase examined). This idea may be valid for dense
biaxial nematic phases such as a thermotropic biaxial ne-
matic or for the lyotropic biaxial nematics of micelles
which have relatively little water. In such cases, the build-
ing blocks are very close to each other or even in con-
tact, so that their separation cannot fluctuate very much.
Therefore, short range positional correlations are then
readily observed. The V2O5 suspensions examined in this
work are very different because they are composed of 95%
water and only 5% of V2O5 ribbons. The distances be-
tween ribbons can fluctuate much more. For instance, con-
sidering the width of the peak in Figure 4b, it is clear that
the average distance between the flat faces of the ribbons
fluctuates by at least 30%. Similarly, still in the plane
perpendicular to n, the average distance between ribbon
edges must fluctuate even more because there is no reason
why the short sides of the ribbons should be in register.
This explains why no lateral short-range positional cor-
relations between ribbons can be observed. A schematic
representation of the organization of this biaxial nematic
gel phase is shown in Figure 6. To conclude on this par-
ticular point, the absence of lateral short-range positional
order does not conflict with the biaxial symmetry of the
phase but should rather be considered as a distinctive fea-
ture of this very dilute biaxial nematic gel phase.

The orientation of our shear-aligned samples is another
interesting feature that can be accounted for by theories.
Leslie et al. [29] have developed a general framework to
discuss the stability under flow of a given orientation de-
pending on the value of three coefficients τ1, τ2, τ3. These
coefficients have been calculated by Fialkowski [30] for a
biaxial nematic phase of hard parallelepipeds of dimen-
sions a, b, c (a < b < c). In our case, all of them are found
to be negative and of absolute value larger than unity. For
such a set of coefficients, the only stable orientation pre-
dicted by Leslie et al. is that for which m is oriented along
the neutral axis z and n is in the direction of flow. This is
precisely the orientation observed experimentally.

These SAXS studies show unambiguously that V2O5

gels at 5% volume fraction have a biaxial nematic order.
Besides, their properties are well described by recent hard-

core theories. However, the gel nature of these materials
raises more subtle questions about the thermodynamic na-
ture of this biaxial nematic ordering. Shearing these sus-
pensions is known to suppress their elastic properties but
one may wonder if any relaxation of the biaxial nematic
order could be hampered by the gel reconstruction. At this
point, it should be stressed that biaxial nematic ordering
has never been observed whatever the shear rate with the
suspensions of 2% volume fraction, even though they are
gels too. More detailed experiments are probably needed
to clarify this delicate point. In conclusion, the use of min-
eral compounds [31] instead of organic ones gives access to
moieties which perfectly match the criteria required to ob-
serve a Nb phase both in terms of particle dimensions and
interactions. To our knowledge, applying a shear stress to
align a biaxial nematic sample had not yet been reported.
This method should be in principle easy to apply to any
kind of sample and we suggest its use to investigate other
Nb phases reported but still questioned in literature.
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